557 research outputs found

    ZnO-Based Electron Transporting Layer for Perovskite Solar Cells

    Get PDF
    Recently, organic/inorganic hybrid perovskite materials, APbX3 (A = CH3NH3 or HC(NH2)2; X = I, Br or Cl), have attracted much interest for their promising application in solar cells as the light-absorbing component to their broad spectral absorption, strong light-harvesting and long exciton diffusion length. The perovskite solar cells (PSCs) can reduce the production costs and achieve high power conversion efficiency significantly compared to standard silicon cells and other thin film cells. On the other hand, ZnO based materials have been recently investigated in the PSCs devices as electron injection layers for low-temperature, low-cost and flexible devices. This chapter aims to review PSCs using ZnO materials as electron extraction layers. We will discuss the electron transmission and effect of the electron-transporting layer in PSCs and the preparation method of the ZnO. ZnO is a potential material for many applications due to their high electron mobility, transparent and various nanostructure. The ZnO was introduced into the PSCs structure to improve electron extraction efficiency. This chapter summaries the effect and parameters of PSCs based on the ZnO layer/nanostructure prepared by several methods as electron transport layers

    Data mining of the GAW14 simulated data using rough set theory and tree-based methods

    Get PDF
    Rough set theory and decision trees are data mining methods used for dealing with vagueness and uncertainty. They have been utilized to unearth hidden patterns in complicated datasets collected for industrial processes. The Genetic Analysis Workshop 14 simulated data were generated using a system that implemented multiple correlations among four consequential layers of genetic data (disease-related loci, endophenotypes, phenotypes, and one disease trait). When information of one layer was blocked and uncertainty was created in the correlations among these layers, the correlation between the first and last layers (susceptibility genes and the disease trait in this case), was not easily directly detected. In this study, we proposed a two-stage process that applied rough set theory and decision trees to identify genes susceptible to the disease trait. During the first stage, based on phenotypes of subjects and their parents, decision trees were built to predict trait values. Phenotypes retained in the decision trees were then advanced to the second stage, where rough set theory was applied to discover the minimal subsets of genes associated with the disease trait. For comparison, decision trees were also constructed to map susceptible genes during the second stage. Our results showed that the decision trees of the first stage had accuracy rates of about 99% in predicting the disease trait. The decision trees and rough set theory failed to identify the true disease-related loci

    The role of cytochrome c oxidase subunit Va in non-small cell lung carcinoma cells: association with migration, invasion and prediction of distant metastasis

    Get PDF
    BACKGROUND: Lung cancer is one of the most lethal malignancies worldwide, but useful biomarkers of lung cancer are still insufficient. The aim of this study is to identify some membrane-bound protein(s) associated with migration and invasion in human non-small cell lung cancer (NSCLC) cells. METHODS: We classified four NSCLC cell lines into high and low migration/invasion groups by Transwell and Matrigel assays. Using two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), we identified 10 membrane-associated proteins being significantly overexpressed in the high migration/invasion group. The expression of the target protein in the four NSCLC cell lines was then confirmed by reverse transcription polymerase chain reaction (RT-PCR), western blot and immunostaining. RNA interference technique was applied to observe the influence of the target protein on migration and invasion. Gelatin zymography was also performed to evaluate the activities of matrix metalloproteinase (MMP)-2 and MMP-9. Expression condition of the target protein on surgical specimens was further examined by immunohistochemical staining and the clinicopathologic data were analyzed. RESULTS: We identified a mitochondria-bound protein cytochrome c oxidase subunit Va (COX Va) because of its abundant presence found exclusively in tumorous areas. We also demonstrated that migration and invasion of NSCLC cells decreased substantially after knocking down COX Va by siRNA. Meanwhile, we found a positive correlation between COX Va expression, Bcl-2 expression and activities of MMP-2 and MMP-9 in NSCLC cells. Immunohistochemical staining of surgically resected lung adenocarcinomas in 250 consecutive patients revealed that strong COX Va expression was found in 54.8% (137/250) of patients and correlated positively with the status of lymph node metastasis (P = 0.032). Furthermore, strong COX Va expression was associated with the presence of distant metastasis (P = 0.033). CONCLUSIONS: Our current study showed that COX Va may play a role in migration and invasion of NSCLC cells and can be used as a biomarker to predict aggressiveness of NSCLC

    Biomechanical comparison of lumbar spine instability between laminectomy and bilateral laminotomy for spinal stenosis syndrome – an experimental study in porcine model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association of lumbar spine instability between laminectomy and laminotomy has been clinically studied, but the corresponding <it>in vitro </it>biomechanical studies have not been reported. We investigated the hypothesis that the integrity of the posterior complex (spinous process-interspinous ligament-spinous process) plays an important role on the postoperative spinal stability in decompressive surgery.</p> <p>Methods</p> <p>Eight porcine lumbar spine specimens were studied. Each specimen was tested intact and after two decompression procedures. All posterior components were preserved in Group A (Intact). In Group B (Bilateral laminotomy), the inferior margin of L4 lamina and superior margin of L5 lamina were removed, but the L4–L5 supraspinous ligament was preserved. Fenestrations were made on both sides. In Group C (Laminectomy) the lamina and spinous processes of lower L4 and upper L5 were removed. Ligamentum flavum and supraspinous ligament of L4–L5 were removed. A hydraulic testing machine was used to generate an increasing moment up to 8400 N-mm in flexion and extension. Intervertebral displacement at decompressive level L4–L5 was measured by extensometer</p> <p>Results</p> <p>The results indicated that, under extension motion, intervertebral displacement between the specimen in intact form and at two different decompression levels did not significantly differ (<it>P </it>> 0.05). However, under flexion motion, intervertebral displacement of the laminectomy specimens at decompression level L4–L5 was statistically greater than in intact or bilateral laminotomy specimens (<it>P </it>= 0.0000963 and <it>P </it>= 0.000418, respectively). No difference was found between intact and bilateral laminotomy groups. (<it>P </it>> 0.05).</p> <p>Conclusion</p> <p>We concluded that a lumbar spine with posterior complex integrity is less likely to develop segment instability than a lumbar spine with a destroyed anchoring point for supraspinous ligament.</p

    Hypothermic manipulation of bone cement can extend the handling time during vertebroplasty

    Get PDF
    BACKGROUND: Polymethylmethacrylate (PMMA) is commonly used for clinical applications. However, the short handling time increases the probability of a surgeon missing the crucial period in which the cement maintains its ideal viscosity for a successful injection. The aim of this article was to illustrate the effects a reduction in temperature would have on the cement handling time during percutaneous vertebroplasty. METHODS: The injectability of bone cement was assessed using a cement compressor. By twisting the compressor, the piston transmits its axial load to the plunger, which then pumps the bone cement out. The experiments were categorized based on the different types of hypothermic manipulation that were used. In group I (room temperature, sham group), the syringes were kept at 22°C after mixing the bone cement. In group 2 (precooling the bone cement and the container), the PMMA powder and liquid, as well as the beaker, spatula, and syringe, were stored in the refrigerator (4°C) overnight before mixing. In group 3 (ice bath cooling), the syringes were immediately submerged in ice water after mixing the bone cement at room temperature. RESULTS: The average liquid time, paste time, and handling time were 5.1 ± 0.7, 3.4 ± 0.3, and 8.5 ± 0.8 min, respectively, for group 1; 9.4 ± 1.1, 5.8 ± 0.5, and 15.2 ± 1.2 min, respectively, for group 2; and 83.8 ± 5.2, 28.8 ± 6.9, and 112.5 ± 11.3 min, respectively, for group 3. The liquid and paste times could be increased through different cooling methods. In addition, the liquid time (i.e. waiting time) for ice bath cooling was longer than for that of the precooling method (p < 0.05). CONCLUSIONS: Both precooling (i.e. lowering the initial temperature) and ice bath cooling (i.e. lowering the surrounding temperature) can effectively slow polymerization. Precooling is easy for clinical applications, while ice bath cooling might be more suitable for multiple-level vertebroplasty. Clinicians can take advantage of the improved injectability without any increased cost

    Pullout strength of pedicle screws with cement augmentation in severe osteoporosis: A comparative study between cannulated screws with cement injection and solid screws with cement pre-filling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pedicle screws with PMMA cement augmentation have been shown to significantly improve the fixation strength in a severely osteoporotic spine. However, the efficacy of screw fixation for different cement augmentation techniques, namely solid screws with retrograde cement pre-filling versus cannulated screws with cement injection through perforation, remains unknown. This study aimed to determine the difference in pullout strength between conical and cylindrical screws based on the aforementioned cement augmentation techniques. The potential loss of fixation upon partial screw removal after screw insertion was also examined.</p> <p>Method</p> <p>The Taguchi method with an L<sub>8 </sub>array was employed to determine the significance of design factors. Conical and cylindrical pedicle screws with solid or cannulated designs were installed using two different screw augmentation techniques: solid screws with retrograde cement pre-filling and cannulated screws with cement injection through perforation. Uniform synthetic bones (test block) simulating severe osteoporosis were used to provide a platform for each screw design and cement augmentation technique. Pedicle screws at full insertion and after a 360-degree back-out from full insertion were then tested for axial pullout failure using a mechanical testing machine.</p> <p>Results</p> <p>The results revealed the following 1) Regardless of the screw outer geometry (conical or cylindrical), solid screws with retrograde cement pre-filling exhibited significantly higher pullout strength than did cannulated screws with cement injection through perforation (<it>p </it>= 0.0129 for conical screws; <it>p </it>= 0.005 for cylindrical screws). 2) For a given cement augmentation technique (screws without cement augmentation, cannulated screws with cement injection or solid screws with cement pre-filling), no significant difference in pullout strength was found between conical and cylindrical screws (<it>p ></it>0.05). 3) Cement infiltration into the open cell of the test block led to the formation of a cement/bone composite structure. Observations of the failed specimens indicated that failure occurred at the composite/bone interface, whereas the composite remained well bonded to the screws. This result implies that the screw/composite interfacial strength was much higher than the composite/bone interfacial strength. 4) The back-out of the screw by 360 degrees from full insertion did not decrease the pullout strength in any of the studied cases. 5) Generally, larger standard deviations were found for the screw back-out cases, implying that the results of full insertion cases are more repeatable than those of the back-out cases.</p> <p>Conclusions</p> <p>Solid screws with retrograde cement pre-filling offer improved initial fixation strength when compared to that of cannulated screws with cement injection through perforation for both the conically and cylindrically shaped screw. Our results also suggest that the fixation screws can be backed out by 360 degrees for intra-operative adjustment without the loss of fixation strength.</p

    AutoEncoding Tree for City Generation and Applications

    Full text link
    City modeling and generation have attracted an increased interest in various applications, including gaming, urban planning, and autonomous driving. Unlike previous works focused on the generation of single objects or indoor scenes, the huge volumes of spatial data in cities pose a challenge to the generative models. Furthermore, few publicly available 3D real-world city datasets also hinder the development of methods for city generation. In this paper, we first collect over 3,000,000 geo-referenced objects for the city of New York, Zurich, Tokyo, Berlin, Boston and several other large cities. Based on this dataset, we propose AETree, a tree-structured auto-encoder neural network, for city generation. Specifically, we first propose a novel Spatial-Geometric Distance (SGD) metric to measure the similarity between building layouts and then construct a binary tree over the raw geometric data of building based on the SGD metric. Next, we present a tree-structured network whose encoder learns to extract and merge spatial information from bottom-up iteratively. The resulting global representation is reversely decoded for reconstruction or generation. To address the issue of long-dependency as the level of the tree increases, a Long Short-Term Memory (LSTM) Cell is employed as a basic network element of the proposed AETree. Moreover, we introduce a novel metric, Overlapping Area Ratio (OAR), to quantitatively evaluate the generation results. Experiments on the collected dataset demonstrate the effectiveness of the proposed model on 2D and 3D city generation. Furthermore, the latent features learned by AETree can serve downstream urban planning applications

    Fucosyltransferase 1 and 2 play pivotal roles in breast cancer cells.

    Get PDF
    FUT1 and FUT2 encode alpha 1, 2-fucosyltransferases which catalyze the addition of alpha 1, 2-linked fucose to glycans. Glycan products of FUT1 and FUT2, such as Globo H and Lewis Y, are highly expressed on malignant tissues, including breast cancer. Herein, we investigated the roles of FUT1 and FUT2 in breast cancer. Silencing of FUT1 or FUT2 by shRNAs inhibited cell proliferation in vitro and tumorigenicity in mice. This was associated with diminished properties of cancer stem cell (CSC), including mammosphere formation and CSC marker both in vitro and in xenografts. Silencing of FUT2, but not FUT1, significantly changed the cuboidal morphology to dense clusters of small and round cells with reduced adhesion to polystyrene and extracellular matrix, including laminin, fibronectin and collagen. Silencing of FUT1 or FUT2 suppressed cell migration in wound healing assay, whereas FUT1 and FUT2 overexpression increased cell migration and invasion in vitro and metastasis of breast cancer in vivo. A decrease in mesenchymal like markers such as fibronectin, vimentin, and twist, along with increased epithelial like marker, E-cadherin, was observed upon FUT1/2 knockdown, while the opposite was noted by overexpression of FUT1 or FUT2. As expected, FUT1 or FUT2 knockdown reduced Globo H, whereas FUT1 or FUT2 overexpression showed contrary effects. Exogenous addition of Globo H-ceramide reversed the suppression of cell migration by FUT1 knockdown but not the inhibition of cell adhesion by FUT2 silencing, suggesting that at least part of the effects of FUT1/2 knockdown were mediated by Globo H. Our results imply that FUT1 and FUT2 play important roles in regulating growth, adhesion, migration and CSC properties of breast cancer, and may serve as therapeutic targets for breast cancer
    corecore